77 Dental Caries and Community Water Fluoridation Trends - United States 86 Tuberculosis - United States, 1984 87 Update: Influenza Activity - United States

MORBIDITY AND MORTALITY WEEKLY REPORT

Perspectives in Disease Prevention and Health Promotion

Dental Caries and Community Water Fluoridation Trends - United States

One of the 12 fluoridation and dental health objectives identified in the U.S. Public Health Service's Objectives for the Nation (1) states: By 1990, the number of 9-year-old children who have had caries in their permanent teeth should be decreased to 60\% (40\% would be caries-free). In 1971-1973, 71\% of these children had caries in their permanent teeth. The National Caries Prevalence Survey, conducted by the National Institute of Dental Research (NIDR) in 1979-1980 (2), reported that 49\% of these children have had decay in their permanent teeth, demonstrating this objective has been achieved. The survey also reported that $89^{\%} \%$ of 17 -year-olds have had dental caries (2). Although 37% of children aged $5-17$ years were caries-free, approximately 24% of children in the same age group have had five or more decayed, missing (due to caries), and/or filled permanent teeth (Figure 1).

When the NIDR survey is compared with an earlier, similar survey by the National Center
FIGURE 1. Percentage distribution of children aged $5-17$ years, by DMFT* status United States, 1979-1980

- Decayed, missing (due to caries), and/or filled permanent teeth.

Dental Caries - Continued
for Health Statistics, the prevalence of dental decay among school-aged children appears to have been significantly reduced since 1973 (Figure 2) $(2,3)$. The availability of fluorides from a number of sources, including community and school water fluoridation, fluoride tablets and drops, fluoride rinses and dentifrices, and clinically applied fluorides, have contributed to the decline in dental caries. It is difficult to attribute this decline to one specific modality, and the effects are not arithmetically additive. However, the combination of systemic and topical fluorides has contributed greatly to improved oral health in the United States. In 1985, approximately 20,000 employed adults and 5,000 older adults at senior citizen centers will be surveyed as part of an NIDR National Survey of Adult Dental Health. Oral health status and data on treatment needs from this survey will be available in 1987.

Although community water fluoridation remains the most effective and practical means of preventing and controlling dental caries, nearly half the U.S. population still does not have access to optimally fluoridated water. The optimal amount of fluoride necessary to reduce the most dental decay, with the least amount of risk of dental fluorosis (discoloration of the enamel), is 0.7-1.2 mg/l (0.7-1.2 parts fluoride per 1 million parts water) (4). Fluoride occurs naturally in most waters but usually at less than optimal levels. Since it is assumed that people in warmer climates drink more water than people in colder climates, the optimal level is lowest in the southernmost part of the United States. Therefore, the optimal fluoride level is calculated based on the annual average of maximum daily air temperature (5).

Since the introduction in 1945 of the practice of adjusting fluoride levels in community water systems, the number of people with access to water with dentally significant levels of fluoride (0.7 parts per million [ppm] or higher) has increased steadily to an estimated 123 million in 1983 -approximately 52.2% of the total U.S. population (6,7). It is impractical to expect 100\% coverage, because a portion of the population is not served by public water sup-

FIGURE 2. Mean DMFS* for children aged 5-17 years - United States ${ }^{\dagger}$

[^0]Dental Caries - Continued
plies (approximately 6% in 1983) $(6,8)$. However, in some of these water supplies, fluoride occurs naturally at optimal levels, and the number of people served by naturally fluoridated water has remained fairly constant at approximately 10.7 million (Figure 3) (6, 7). Excluding this portion, the estimated percent of the population on public water supplies receiving fluoridated water was 56.5\% in 1983.

However, the number of people served by public water supplies is increasing (Figure 3). This trend can be explained by increased urbanization of the U.S. population. The population served by public water supplies varies from state to state and ranges from 29\% in Oregon to 99% in lllinois and Maryland. The population served by public water supplies in Washington, D.C., is $100 \%(6,8)$.

Another national fluoridation and dental health objective for 1990 states: At least 95% of the population on community water systems should be receiving the benefits of optimally fluoridated water. Of the 60,000 public water supplies in the United States, only about 8,000 are fluoridated $(6,8)$. Approximately 46,000 of these systems serve populations of under 1,000 , and 150 systems serve populations of more than $100,000(6,8)$. The public water systems of nine of the 50 largest cities in the United States are not fluoridated: Los Angeles, San Diego, and San Jose, California; Phoenix, and Tucson, Arizona; San Antonio, Texas; Portland, Oregon; Honolulu, Hawaii; and Newark, New Jersey (9). Past experience has shown that the length of time needed to implement fluoridation in a given community is not necessarily related to the size of the community but rather to other factors, such as how the decision to fluoridate is made (e.g., city council, referendum), and the effectiveness of public health education programs about the benefits of fluoridation.

The maintenance of the optimal level of fluoride is critical once a water system is fluoridated. It has been shown that the dental benefits from fluoridated water are significantly reduced if fluoride levels drop below the optimal concentration (10-12).

The results of the National Preventive Dentistry Demonstration Program conducted by The

FIGURE 3. Fluoridation growth, by population - United States, 1945-1984

Dental Caries - Continued
Robert Wood Johnson Foundation indicate that, "At an estimated cost of less than $\$ 1$ per child per year, fluoridation remains society's least expensive and most effective caries preventive measure" (13).

Reported by Dental Disease Prevention Activity, Center for Prevention Svcs, CDC.

References

1. U.S. Public Health Service. Promoting health/preventing disease: objectives for the nation. Washington, D.C.: U.S. Department of Health and Human Services, 1980.
2. National Institutes of Health, National Institute of Dental Research, National Caries Program. The prevalence of dental caries in United States children, 1979-1980; the national caries prevalence survey. Washington, D.C.: U.S. Public Health Service, 1981. (NIH publication no. 82-2245).
3. National Center for Health Statistics, National Health Survey, 1971-1973. Unpublished data, 1978.
4. Galagan DJ, Vermillion JR. Determining optimum fluoride concentrations. Public Health Rep, 1957;72:491-3.
5. Galagan DJ. Climate and controlled fluoridation. Am Dent Assoc J 1953;47:159-70.
6. CDC. Fluoridation census, 1980. June 1984.
7. CDC. Unpublished data.
8. U.S. Environmental Protection Agency. Facilities and population by primary water supply source. Washington, D.C.: U.S. Environmental Protection Agency, 1984.
(Continued on page 85)
TABLE I. Summary-cases of specified notifiable diseases, United States

Disease	6th Week Ending			Cumulative, 6th Week Ending		
	$\begin{gathered} \text { Feb. } 9, \\ 1985 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Feb. } 11 . \\ & 1984 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Median } \\ 1980-1984 \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb. } 9 . \\ 1985 \\ \hline \end{gathered}$	$\begin{gathered} \text { Feb. } 11 . \\ 1984 \\ \hline \end{gathered}$	$\begin{gathered} \text { Median } \\ 1980.1984 \\ \hline \end{gathered}$
Acquired Immunodeficiency Syndrome (AIDS) Aseptic meningitis	97	39	N	605	387	N
	76	91	86	387	555	510
Encephalitis: Primary (arthropod-borne \& unspec.)	14	17	17	74	92	97
Gonorrhea: $\begin{array}{ll}\text { Post-infectious } \\ \text { Civilian }\end{array}$	4	1	2	10	6	7
	14.314	16.129	17.406	89.276	97.140	112.172
Military	187	410	552	1.612	2.459	3.184
Hepatitis: Type A	431	423	423	2.151	2.208	2.524
Type B	511	473	374	2.488	2.594	2.001
Non A, Non B	65	62	N	- 383	364	N
Unspecified	94	78	145	447	441	915
Legionellosis	12	14	N	60	45	N
Leprosy	\bigcirc	10	5	10	26	26
Malaria	7	5	17	56	66	73
Measles: Total*	4	45	35	27	188	188
Indigenous	2	45	N	5	132	N
Meningococcal infections Total	2	-	N	22	56	N
	58	68	68	283	325	353
Civilian Military	58	68	68	283	325	349
Mumps	61	70	107	260	371	506
Pertussis	17	59	19	103	176	116
Rubella (German measles)	5	9	33	21	44	170
Syphilis (Primary \& Secondary) $\begin{aligned} & \text { Civilian } \\ & \text { Military }\end{aligned}$	539	614	589	2.758	3.262	3.394 54
Toxic Shock syndrome	5 7	7 7	11 N	20 36	40 50	54 N
Tuberculosis	370	419	453	1.780	1.977	2.396
Tularemia	-	1	1	13	4	11
Typhoid fever	7	6	5	20	32	36
Typhus fever, tick-borne (RMSF)	2	1	1	4	7	7
Rabies, animal	75	84	91	339	421	517

TABLE II. Notifiable diseases of low frequency, United States

	Cum 1985		Cum 1985
Anthrax	-	Plague	-
Botulism: Foodborne	-	Poliomyelitis: Total	-
Infant (Tex. 1)	4	Paralytic	$\stackrel{-}{\circ}$
Other	-	Psittacosis (N. Mex. 2)	16
Brucellosis	4	Rabies, human	-
Cholera	-	Tetanus	3
Congenital rubella syndrome	-	Trichinosis	4
Diphtheria	5	Typhus fever, flea-borne (endemic, murine)	-
Leptospirosis	5		

-Two of the 4 reported cases for this week were imported from a foreign country or can be directly traceable to a known internationally imported case within two generations.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
February 9, 1985 and February 11, 1984 (6th Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis (Viral), by type				Legionellosis	Leprosy
			Primary	Post-infectious			A	B	NA, NB	Unspecified		
	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$	1985	1985	1985	1985	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$
UNITED STATES	605	76	74	10	89,276	97,140	431	511	65	94	12	10
NEW ENGLAND	17	2	2	-	2.548	3.156	4	43	3	14	-	-
Maine	1	2	-	-	141	-128			-	-	-	-
NH	-	-	1	-	61	76	-	-	-	-	-	-
V t	-	-	-	-	29	43	-	-	1	-	-	-
Mass	11	-	1	-	843	1.094	3	37	-	14	-	-
RI	1	-	-	-	228	187	-	1	-	-	-	-
Conn	4	2	-	-	1,246	1.628	1	5	2	-	-	-
MID ATLANTIC	241	10	2	-	13.017	11.855	27	89	1	9	4	1
Upstate $\mathrm{N} Y$	44	7	2	-	1.431	1.861	3	8	1	3	-	-
NY City	149	1	-	-	6,128	5.316	14	40	-	3	-	1
N J	32	-	-	-	1,783	1,687	3	14	-	2	4	-
Pa	16	2	-	-	3.675	2.991	7	27	-	1	-	-
EN CENTRAL	45	6	25	2	12.773	13.984	31	58	8	5	1	-
Ohio	14	1	10	1	3,139	2.989	3	16	4	1	1	-
Ind	2	1	6	-	1.130	1.861	3	13	-	1	-	-
III	15	1	-	-	4.186	3.953	8	4	1	1	-	-
Mich	10	3	8	-	3,862	3.776	17	25	3	2	-	-
Wis	4	-	1	1	456	1,405	.	-	-	-	-	-
WN CENTRAL	10	-	3	-	4.979	4.452	10	10	2	2	1	-
Minn	2	-	-	-	774	627	1	4	1	-	-	-
lowa	2	-	3	-	512	569	-	-	1	2	-	-
Mo	4	-	-	-	2.184	1.969	1	3	-	-	1	-
N Dak	,	-	-	-	2. 26	50	-	-	-	-	-	-
S Dak	.	-	-	-	104	147	8	2	-	-	-	-
Nebr	-	-	-	-	500	340	-	1	-	-	-	-
Kans	2	-	-	-	879	750	-	-	-	-	-	-
S ATLANTIC	61	31	12	4	18,437	24.606	32	99	14	11	-	-
Del	1	31	1		412	428	22	-	1	-	-	-
Md	8	3	3	-	2.523	3,370	2	11	-	4	-	-
D C	11	2	,	-	1.487	1,747	-	7	-	-	-	-
Va	6	14	1	3	1.959	2.481	5	17	2	1	-	-
W Va		,	-		280	283		3	-	-	-	-
NC	7	3	7	-	3.620	3.955	2	5	3	1	-	-
S C	1			-	2.622	2.253	2	4	3	1	-	-
Ga	8	4	-	-	2.622	4.773	6	28	1	1	-	-
Fla	19	5	-	1	5.534	5,316	17	24	4	3	-	-
E S CENTRAL	8	3	2	3	7.935	8.101	7	24	2	1	-	-
Ky	3	1	-		780	1.016	5	7	1	-	-	-
Tenn	3	1	1	-	3.170	3,268	2	15	1	1	-	-
Ala	4	1	1	3	2.490	2.600	-	2	-	-	-	-
Miss	1	-	-	-	1.495	1,217	-	-	-	-	-	-
W S CENTRAL	38	8	4	-	13.545	13,203	83	23	4	24	-	-
Ark	3		-	-	1,304	1,164	1	-	-	-	-	-
La	1	-		-	3,084	3.159	3	3	-	-	-	-
Okla		-	3	-	1.411	1,508	17	4	1	4	-	-
Tex	37	8	1	-	7.746	7.372	62	16	3	20	-	-
MOUNTAIN	14	-	3	-	3.111	2,915	52	41	4	11	-	-
Mont	-	-	-	-	80	156	-	-	-	-	-	-
Idaho	-	-	-	-	115	116	1	3	.	-	-	-
Wyo	-	-	-	-	91	77	-	-	-	-	-	-
Colo	4	-	2	-	880	739	5	7	1	8	-	-
N Mex	2	-		-	377	369	11	10		1	-	-
Ariz	6	-	-	-	942	766	22	10	2	1	-	-
Utah		-	1	-	126	165	5	4	1	-	-	-
Nev	2	-	-	-	500	527	8	7		1	-	-
PACIFIC	171	16	21	1	12,931	14.868	185	124	27	17	6	9
Wash	7	2	1	-	832	949	17	14	6	-	2	-
Oreg	4	-	-	-	812	773	30	11	2	1	-	1
Calif	160	10	20	1	10.746	12.614	137	98	18	16	4	7
Alaska	,	-	-	-	327	311	1	1	1	-	-	.
Hawan	-	4	-	-	214	221	-	-	-	-	-	1
Guam	-	U	-	-	-	39	U	U	U	U	U	-
PR	9	U	1	-	419	405	U	U	U	U	U	-
VI	-	U	-	-	39	57	U	U	U	U	U	-
Pac Trust Terr	-	U	-	-	-	-	U	U	U	U	U	-

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
February 9, 1985 and February 11, 1984 (6th Week)

Reporting Area	Malaria	Measles (Rubeola)					Meningococcal Infections	Mumps		Pertussis			Rubella		
		Indigenous		Imported *		Total									
	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	1985	$\begin{aligned} & \text { Cum. } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1985	$\begin{aligned} & \text { Cum } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$
UNITED STATES	56	2	5	2	22	188	283	61	260	17	103	176	5	21	44
NEW ENGLAND	1	-	-	-	-	-	17	3	10	-	1	3	-	2	1
Maine	-	-	-	-	-	-	1	-	1	-	-		-	2	1
$\mathrm{N} . \mathrm{H}$.	-	-	-	-	-	-	2	-	-	-	1	1	-	1	-
Mass.	1	-	-	-	-	-	3	3	8	-	1	1	-	1	-
R.I.	-	-	-	-	-	-	6	3	8	-	-	1	-	1	-
Conn.	-	-	-	-	-	-	5	-	1	-	-	1	-	-	-
MID ATLANTIC	8	-	-	-	1	-	28	22	53	2	18	7	-	5	-
Upstate N.Y.	2	-	-	-	1	-	10	14	40	1	5	5	-	1	-
N.Y. City	3	-	-	-	-	-	1	1		1	5	5	-	3	-
N.J.	-	-	-	-	-	-	8	2	5	.			-	1	-
Pa .	3	-	-	-	-	-	9	6	8	-	8	2	-	1	-
E.N. CENTRAL	4	-	1	-	-	125	59	16	75	-	19	37	4	4	5
Ohio	1	-	-	-	-	-	21	5	36	-	8	5	4	4	5
Ind.	-	-	-	-	-	-	8	-	6	-	10	19	-	-	-
III.	-	-	-	-	-	16	5	6	14	-	1	5	-		3
Mich.	3	-	-	-	-	109	21	5	18	-	1	4	4	4	3 1
Wis.	-	-	1	-	-	-	4		1	-	-	4		4	1
W.N. CENTRAL	1	-	-	-	-	-	18	-	6	1	6	44	-	1	3
Minn.	-	-	-	-	-	-	5	-		1	1	2	-	1	3
lowa	-	-	-	-	-	-	2	-	1	-	,	3	-	-	-
Mo.	1	-	-	-	-	-	10	-	3	1	3	1	-	-	-
N. Dak.	-	-	-	-	-		-	-	-	-	2	-	-	.	1
S. Dak.	-	-	-	-	-	-	1	-	-	-	-	-	-	-	1
Nebr.	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-
Kans.	-	-	-	-	-	-	-	-	2	-	-	36	-	1	2
S. ATLANTIC	8	-	1	1	2	-	52	4	21	5	16	24	-	1	3
Del.	-	-	-	- +	-	-	1	-	.	5	16	24	-	1	3
Md.	1	-	-	1^{\dagger}	1	-	5	1	1	-	1	1	-	-	-
D.C.	1	-	-	+	1	-	2	1	1	-	1	1	-	-	-
Va .	2	-	-	-	-	-	7	1	6	-	-	4	-	-	-
W. Va.	1	-	-	-	-	-	3	.	6	-	-	2	-	-	-
N.C.	1	-	-	-	-	-	11	1	1	-	4	7	-	-	-
S.C.	-	-	-	-	-	-	5	1	1	-	4	1	-	1	-
Ga.	-	-	-	-	-	-	8	-	2	2	3	3	-	1	1
Fla.	2	-	1	-	-	-	10	1	4	3	8	6	-	-	2
E.S. CENTRAL	2	-	-	-	-	2	16	-	1	1	3	2	-	1	-
Ky.	-	-	-	-	-	-	2	-	1	1	1	1	-	1	-
Tenn.	-	-	-	-	-	2	8	-	1	,	1	1	-	1	-
Ala.	2	-	-	-	-	-	5	-	,	-	1	1	-	-	-
Miss.	-	-	-	-	-	-	1	-	-	-	,	-	-	-	-
W.S. CENTRAL	3	-	-	-	-	28	20	3	19	2	9	14	-	1	
Ark.	-	-	-	-	-	-	-	.	1	-	5	8	-	1	1
La.	-	-	-	-	-	-	1	-	-	-		8	-	1	1
Okla.	-	-	-	-	-	-	3	N	N	2	4	2	-	-	-
Tex.	3	-	-	-	-	28	16	3	18	2		4	-	-	3
MOUNTAIN	-	-	-	-	8	19	18	2	27	1	4	29	-	-	3
Mont.	-	-	-	-	8	-	2	1	2	1	4	14	-	-	3
Idaho	-	-	-	-	-	-	-	-	2	-	-	1	-	-	1
Wyo.	-	-	-	-	-	-	-	-	2	-	-	-	-	-	1
Colo.	-	-	-	-	-	-	4	1	5	1	2	11	-	-	-
N. Mex.	-	-	-	-	-	1	4	N	N	1	1	2	-	-	-
Ariz.	-	-	-	-	-	-	3	N	16	-	1	2	-	.	-
Utah	-	-	-	-	-	18	4	-		.	1	1	-	-	2
Nev .	-	-	-	-	-	-	1	-	2	-	-	.	-	-	2
PACIFIC	29	2	3	1	11	14	55	11	48	5	27	16	1	6	25
Wash.	4	,	-		-	2	7	-	2	1	2	6	-		25
Oreg.	1	,	-	it	10^{-}	-	5	N	N	,	4	4	-	-	-
Calif.	22	1	2	1^{\dagger}	10	10	43	9	39	4	19	6	1	6	24
Alaska	1	-	-	-	-	-			1	4	15.	6	1	6	24
Hawaii	1	1	1	-	1	2	-	2	6	-	2	-	-	-	1
Guam	-	U	,	U	-	14	-	U	-			-			
P.R.	-	U	15	U	-	-	8	U	11	U	1	-	U	2	1
V.I.	-	U	2	U	-	-	-	U	1	U	,	-	U	2	1
Pac. Trust Terr.	-	U	-	U	-	-	-	U	1	U	-	-	U	-	-

[^1][^2]TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
February 9, 1985 and February 11, 1984 (6th Week)

TABLEIV. Death in 121 U.S. cities," week ending
February 9, 1985 (6th Week)

Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\& } 1^{\bullet \bullet} \\ & \text { Total } \end{aligned}$	Reporting Area	All Causes, By Age (Years)						P\&1"•
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	$\geqslant 65$	45-64	25-44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	818	583	170	31	16	18	99	S. ATLANTIC	1,215	801	234	85	41	49	54
Boston, Mass.	223	142	54	12	7	8	20	Atlanta, Ga.	132	74	33	13	4	8	2
Bridgeport, Conn.	41	23	12	4	2	-	6	Baltimore, Md.	221	132	52	18	10	9	5
Cambridge, Mass.	30	27	3	-	-	-	7	Charlotte, N.C.	73	45	19	2	4	3	5
Fall River, Mass.	33	24	8	1	-	-	2	Jacksonville, Fla	115	75	26	4	6	4	10
Hartford, Conn.	41	28	11	1	-	1	5	Miami, Fla	153	92	34	16	8	3	4
Lowell, Mass.	39	29	8	-	1	1	3	Norfolk, Va.	43	22	12	4	3	2	4
Lynn, Mass.	18	15	3	-	.	.	2	Richmond, Va	91	61	13	8		9	3
New Bedford, Mass	s 25	23	2	-	-		2	Savannah, Ga	25	18	3	1	1	2	1
New Haven, Conn.	44	29	8	4	2	1	2	St. Petersburg. Fla	146	121	18	4	2	1	9
Providence, RII.	107	77	23	1	2	4	16	Tampa, Fla.	75	45	13	8	1	3	5
Somerville, Mass	10	6	3	1	2	-	1	Washington, D.C.§	90	79	1	4	1	5	2
Springfield, Mass	66	51	10	3	.	2	4	Wilmington, Del.	51	37	10	3	1	.	4
Waterbury, Conn.	36	26	10	-	-		6								
Worcester, Mass.	105	83	15	4	2	1	23	E.S CENTRAL	980	648	222	61	24	24	69
								Birmingham, Ala.	107	72	25	7	1	2	3
MID. ATLANTIC 2	2,707	1,851	553	194	59	50	181	Chattanooga, Tenn	79	57	15	1	2	4	5
Albany, N.Y.	64	42	14	3	2	3	1	Knoxville, Tenn	114	71	25	12	1	5	5
Allentown, Pa.	13	12	1	-	-	-	-	Louisville, K y	88	67	17	2	-	2	8
Buffalo, N.Y.	135	98	24	8	2	3	21	Memphis, Tenn.	350	220	85	26	14	4	31
Camden, N.J.	45	34	7	2	1	1	1	Mobile, Ala	79	50	20	6	2	1	4
Elizabeth, N.J.	33	23	8	2	-	-	3	Montgomery, Ala	36	21	11	1	1	2	4
Erie, Pa.t	53	36	11	4	2	-	7	Nashville. Tenn	127	90	24	6	3	4	9
Jersey City, N.J.	67	27	18	14	8	-	3								
N.Y. City, N.Y. 1	1.559	1.067	310	123	33	26	106	W.S CENTRAL	1.231	771	289	90	32	49	84
Newark, N.J.	75	43	15	13	2	2	6	Austin, Tex	74	51	12	6	3	2	11
Paterson, N.J.	45	39	4	2	-	-	6	Baton Rouge. La	33	20	10	-	-	3	1
Philadelphia, Pa.t	122	74	29	7	2	10	7	Corpus Christi, Tex	43	24	9	5	2	3	-
Pittsburgh, Pa.t	63	37	22	2	1	1	2	Dallas, Tex	186	112	42	18	6	8	13
Reading, Pa.	35	27	5	-	3	-	2	El ?aso. Tex	75	49	16	7	3	-	6
Rochester, N.Y.	130	95	28	5	1	1	5	Fort Worth. Tex	105	69	30	3	1	2	9
Schenectady, N.Y.	24	20	3	1	-	-	1	Houston. Tex	160	74	44	20	8	14	7
Scranton, Pa. \dagger	29	19	10	-	-	-	1	Little Rock. Ark	74	43	20	2	4	5	7
Syracuse, N.Y.	97	71	21	1	2	2	2	New Orleans, La	137	90	35	7	2	3	2
Trenton, N.J.	59	38	16	4	-	1	1	San Antonio. Tex	200	143	39	11	2	5	21
Utica, N.Y.	15	13	2	-	-	.	1	Shreveport, La	51	35	8	7	-	1	3
Yonkers, N.Y.	44	36	5	3	-	-	6	Tulsa, Okla	93	61	24	4	1	3	4
E.N. CENTRAL	2.451	1.761	399	141	62	87	123	MOUNTAIN	716	470	152	46	18	29	55
Akron, Ohio	66	46	11	5	3	1	4	Albuquerque, N Mex	124	79	24	12	2	6	9
Canton, Ohio	52	34	15	3	-	-	4	Colo. Springs. Colo	37	29	2	4	2	-	6
Chicago, III §	555	460	11	28	16	39	17	Denver, Colo	126	81	24	10	4	7	8
Cincinnati, Ohio	119	84	25	3	2	5	15	Las Vegas. Nev	86	47	27	5	1	6	7
Cleveland, Ohio	196	132	43	13	4	4	6	Ogden, Utah	30	21	7	1	1	-	5
Columbus, Ohio	131	86	26	11	5	3	7	Phoenix, Ariz	139	88	35	7	5	4	6
Dayton, Ohio	168	113	42	4	4	5	2	Pueblo, Colo	29	24	3 3	1	5	1	4
Detroit, Mich	297	177	67	31	10	12	9	Salt Lake City, Utah	46	24	13	4	2	3	2
Evansville, Ind.	58	41	11	4	-	2	1	Tucson, Ariz	99	77	17	2	1	2	8
Fort Wayne, Ind §	60	57	-	1	1	1	2								
Gary, Ind.	19	13	4	1	1	-	-	PACIFIC	2,275	1.733	312	118	47	62	193
Grand Rapids, Mich	h 51	42	8	-	-	1	4	Berkeley. Calif	23	17	3	3		62	1
Indianapolis, Ind.	185	118	42	9	9	7	3	Fresno, Calif	98	57	25	9	1	6	19
Madison, Wis.	36	24	8	3	1	-	7	Glendale, Calif §	31	31	-	-		-	
Milwaukee, Wis.	146	110	24	9	2	1	9	Honolulu, Hawain	72	55	13	3	-	1	8
Peoria, III.	38	23	10	4	-	1	1	Long Beach. Calif.	133	97	22	5	5	4	10
Rockford, III.	52	41	6	3	1	1	12	Los Angeles, Calif §	558	515	7	5	16	12	21
South Bend, Ind.	61	43	12	3	1	2	5	Oakland, Calif	94	62	22	8	2		8
Toledo, Ohio	97	67	22	4	2	2	11	Pasadena, Calif	47	34	6	1	3	3	2
Youngstown, Ohio	64	50	12	2	-	-	4	Portland, Oreg.	131	95	25	5	3	3	9
								Sacramento, Calif	169	125	28	6	3	7	20
W.N. CENTRAL	848	629	138	34	22	25	52	San Diego, Calif	194	136	37	10	5	6	33
Des Moines, lowa	56	44	8	4	-		10	San Francisco. Calif	215	147	33	27	2	6	9
Duluth, Minn.	54	36	8	1	3	6	3	San Jose, Calif	222	160	40	12	3	7	35
Kansas City, Kans.	46	28	11	-	5	2	-	Seattle, Wash	147	99	28	15	4	1	7
Kansas City, Mo.	125	83	31	5	1	5	8	Spokane, Wash.	45	31	9	1	-	4	5
Lincoln, Nebr.	40	35	5	-	-	-	2	Tacoma, Wash.	96	72	14	8	-	2	6
Minneapolis, Minn	110	72	20	10	6	2	5								
Omaha, Nebr.	105	80	14	5	3	3	13	TOTAL	$13.241^{\text {tt }}$	9.247	2.469	800	321	393	910
St Louis, Mo.	184	150	20	5	2	7	6								
St. Paul, Minn.	89	70	15	3	1	-	1								
Wichita, Kans.	39	31	6	1	1	-	4								

[^3]TABLE V. Years of potential life lost, deaths, and death rates, by cause of death, and estimated number of physician contacts, by principal diagnosis, United States

-For details of calculation, see footnotes for Table V. MMWR 1985;34:2.
${ }^{\dagger}$ Years of potential life lost for persons between 1 year and 65 years old at the time of death are derived from the number of deaths in each age category as reported by the National Center for Health Statistics, Monthly Vital Statistics Report (MVSR). Vol. 32, No. 13, September 21. 1984
$\S_{\text {National }}$ Center for Health Statistics, Monthly Vital Statistics Report (MVSR), Vol. 33, No. 10. January 29, 1985, pp. 8-9.
'IMS America National Disease and Therapeutic Index (NDTI). Monthly Report, September 1984, Section III.
${ }^{\dagger \dagger}$ MVSR Vol. 33, No. 9, December 26, 1984, p. 1.

Dental Caries - Continued

9. CDC. Over 115 million people on fluoridated water supplies in U.S. as of December 31, 1980. Atlanta, Georgia: Centers for Disease Control, April 1984.
10. Chrietzberg JE, Lewis JE. Effect of modifying sub-optimal fluoride concentration in public vater supply. Ga Dent Assoc J, July 1962:12-7.
11. Sweeney EA, Murphy TJ, Steinhurst J, Taylor FB. Experiences in maintaining fluoride concentrations at optimal level in Massachusetts public water supplies. Mass Dent Soc J. Summer 1978:147-55.
12. American Dental Association. Omaha's fluoridation from . 6 to 1 ppm reduces caries 44%. Am Dent Assoc News, 1980.
13. The Robert Wood Johnson Foundation. Special report: national preventive dentistry demonstration program. Chicago: Robert Wood Johnson Foundation, 1983.

Tuberculosis - United States, 1984

In 1984, a provisional total of 21,701 tuberculosis cases was reported to CDC, a 9.0\% decline from the 1983 final total of 23,846 cases. Similarly, in 1984 the provisional incidence rate was 9.2 cases per 100,000 population, a decline of 9.8% from the 1983 final rate of 10.2/10,000 (Figure 4).

Final mortality data recently released by the National Center for Health Statistics indicate that, in 1982, there were 1,807 tuberculosis deaths, a decline of 6.7% from the 1,937 deaths reported in 1981.
Reported by Div of Tuberculosis Control, Center for Prevention Svcs, CDC.
Editorial Note: From 1975 through 1978, the average annual decrease in the tuberculosis incidence rate was 6.3% (Figure 4). From 1978 through 1981, when there was a large influx of Southeast Asian refugees, the average annual decline was only 3.2%. A 7.6% decrease in 1982, a 7.3% decrease in 1983, and the provisional 9.8% decrease in 1984 indicate that the previous downward trend has resumed.

Three factors may have contributed to the decreased incidence of tuberculosis: (1) a decline in the number of indigenous tuberculosis cases; (2) a decline in the number of refugees

FIGURE 4. Reported tuberculosis rate - United States, 1975-1984*

-1984 rate provisional.

Tuberculosis - Continued

with tuberculosis arriving in the United States (since 1983, Indochinese refugees with tuberculosis have been completing supervised, directly observed chemotherapy in Southeast Asia before coming to the United States); and (3) an increase in the number of states using the new national individual case reporting system, which requires more accurate verification of cases before they are counted.

In 1980, the number of tuberculosis deaths declined by 1.4%, and in 1981, by 2.1%. The decline of 6.7% in 1982 is encouraging.

The decline in the tuberculosis incidence rate indicates continuing progress toward the 1990 national prevention objective of an annual reported incidence of eight cases per 100,000 population (Figure 4) (1). Intensification of tuberculosis control efforts using existing technology and program strategies $(2,3)$ should be able to accelerate this downward trend. If new tools for tuberculosis control, which are more effective, more efficient, and easier to implement, can be developed, tuberculosis elimination in the United States can become a reality.

References

1. U.S. Public Health Service. Promoting health/preventing disease: objectives for the nation. Washington, D.C.: U.S. Public Health Service, 1980, p. 58.
2. American Thoracic Society. Control of tuberculosis. Am Rev Resp Dis 1983;128:336-42.
3. American Thoracic Society. Treatment of tuberculosis and other mycobacterial diseases. Am Rev Resp Dis 1983;127:790-6.

Epidemiologic Notes and Reports

Update: Influenza Activity - United States

Influenza activity continued to increase throughout January and into February 1985. For the week ending February 9, 10 states (Alabama, Nebraska, New Hampshire, New Mexico, Oklahoma, Pennsylvania, South Dakota, Texas, Virginia, and Washington) and the District of Columbia reported widespread outbreaks of influenza-like illness, and 14 states reported regional outbreaks. Family physicians who report weekly to CDC noted an average of 11 cases of influenza-like illness for the week ending January 30, compared with the average of 6.6 cases at the beginning of January.

Of total deaths reported from 121 U.S. cities, the proportion associated with pneumonia and influenza ($P \& 1$) has increased from about 5% at the beginning of January to 6.9% for the week ending February 9. P\&I deaths most recently exceeded 6% in 1980-1981, when many type $A(H 3 N 2)$ virus outbreaks occurred, and $P \& 1$ deaths peaked at 6.9%.

A total of 491 type $A(H 3 N 2)$ isolates have been reported to CDC through the week ending February 1 from the network of WHO collaborating laboratories in the United States, compared with 44 isolates reported through December 28, 1984. Including recent reports from Indiana, Kansas, and Virginia, influenza type $A(H 3 N 2)$ isolates have been reported from 42 states this season. Type B isolates have been reported infrequently this season, accounting for only five of the 496 isolates reported by the collaborating laboratories.
Reported by E Balkovic, PhD, Veterans Administration Hospital, New Haven, Connecticut; F Hayden, MD, University of Virginia Hospital, Charlottesville; Participating physicians of the American Academy of Family Physicians; State and Territorial Epidemiologists; State Laboratory Directors; Other collaborating

Influenza - Continued
laboratories; Statistical Svcs Br, Div of Surveillance and Epidemiologic Studies, Epidemiology Program Office, Influenza Br, Div of Viral Diseases, Center for Infectious Diseases, CDC.
Editorial Note: The data from the indicators of influenza activity indicate that U.S. influenza outbreaks are now having a significant impact on illness and death. These indicators are statistical indices of actual numbers of cases and cannot be used to reliably extrapolate the numerical incidence of influenza.

Erratum: Vol. 34, No. 4
p. 49. In the article, "Prevalence of Cytomegalovirus Excretion from Children in Day-Care Centers-Alabama," the total mouth swabs for center A in Table 1 should be 14/61 (23%); for center B, the total percent should be 16%.

The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control. Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents. U.S. Govemment Printing Office, Washington, D.C. 20402. (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other matters pertaining to editorial or other textual considerations should be addressed to : ATTN: Editor, Morbidity and Mortality Weekly Report. Centers for Disease Control. Atlanta. Georgia 30333.

Director, Centers for Disease Control
James O. Mason, M.D., Dr.P.H.
Director, Epidemiology Program Office Carl W. Tyler, Jr., M.D.

ฉU.S. Government Printing Office: 1985-746-149/10038 Region IV

DEPARTMENT OF

HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control
Atlanta GA 30333

Official Business

Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHS 396

[^0]: -Decayed, missing (due to caries), and/or filled permanent tooth surfaces.
 ${ }^{\dagger}$ From the 1971-1973 National Center for Health Statistics (NCHS) Survey and the 1979-1980 National Institute of Dental Research (NIDR) Survey.

[^1]: -For measles only, imported cases includes both out-of-state and international importations

[^2]: N Not notifiable
 U Unavailable

[^3]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100.000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed Fetal deaths are not included.
 - Pneumonia and influenza
 + Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week Complete counts will be available in 4 to 6 weeks
 t Total includes unknown ages.
 \S Data not available. Figures are estimates based on average of past 4 weeks

